coinbase留学生能用吗

区块链常见的三大共识机制区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。可是...
区块链常见的三大共识机制区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景概念:工作量证明机制(Proofofwork),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。应用:POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的BlockHash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到BlockHash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。优缺点优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。缺点:需要消耗大量的算法,达成共识的周期较长概念:权益证明机制(ProofofStake),要求证明人提供一定数量加密货币的所有权。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。应用:2012年,化名SunnyKing的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。为了实现POS,SunnyKing借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。优缺点:优点:缩短达成共识所需的时间,比工作量证明更加节约能源。缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证概念:授权股权证明机制(DelegatedProofofStake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。应用:比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。优缺点:优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。莫斯科市采用以太坊区块链技术进行投票的目的?北京时间2月24日,莫斯科市将推出一个基于以太坊的投票系统,这个系统的名字叫“主动市民”。把投票放入区块链中,只要密码够安全,结果就不会产生争议。这是投票系统的主要宗旨之一,但是近十年来,虚拟货币社区一直为以往系统的不可靠性争论不休。从笔者听说以太坊和智能协议那一刻,笔者率先想到的应用方法就是投票。投票需要放到区块链上。我们目前的社会中没有什么比彻底消除选举中的腐败行为更重要。尽管笔者认为选举完全是浪费时间,但现实是相当大部分的权力是通过民主授权投票分配和实现的。因此,可能被黑客入侵的投票系统应运而生了。在写出这些话的时候,笔者几乎可以想象到美国民主党看到后发出的尖叫声。他们知道,如果没有填塞选票、选民接送、非法移民投票多次等作弊手段他们无法赢得全国或者州选举。主动投票被视为基于数据库的系统已经有一段时间了。对于基于以太坊的系统,莫斯科将开始允许让一小部分居民投票决定诸如新地铁列车的名字、新运动场地座椅颜色等一系列议案。但是为了缓解人们的“是否要信任该市的投票计数系统”担忧,这一计划架构中还被加入了私人版的以太坊块链。该市首席信息办公室策略和创新顾问安德雷·贝罗泽拉夫表示:“当然,有时候我们听说并非所有投票都值得信任。因此,我们决定利用主动市民项目的块链作为建立电子化信任的平台。”基于以太坊的系统将允许人们检查公开源的结果,自去年12月发布以来,该结果已经被超过100名节点操作员下载。有关人士还担心一段合理时间内该系统是否能够容纳和清算足够多的交易。因此,最好的做法是针对一些微不足道的问题进行选举从而对该系统展开测试。但是,毫无疑问,讯息很清晰了。俄罗斯正朝着一个透明的、民主的体制发展。对这些小问题进行选举只是为了将来在更大范围内采用该技术而进行的测试。第一个真正的里程碑应该是一场地方选举,而最终目标则是全国性选举。在西方国家民众对政府机关的信任度正以惊人的速度下滑之际,普京领导下的俄罗斯政府正采取措施试图加强民众对其系统的信任。俄罗斯的民主制度已经历史悠久,但是苏联解体遗留的腐败余毒以及之后叶利钦执政时代遭到西方世界的掠夺仍是一个大问题。俄罗斯推出这一系统恰逢“美国特别检察官穆勒以干涉2016年美国总统大选的理由对13个俄罗斯人和3个俄罗斯实体机构正式提起诉讼,引起全球轰动”的时候。对于反民主势力而言,这一事件令穆勒看起来更像可利用的傻瓜。在华盛顿的大佬们仍不满和抱怨这个自己不喜欢的选举结果的时候,俄罗斯正展开行动,确保约瑟夫·斯大林最经常被人引用的格言之一——“投票的人决定不了什么,计票的人决定了一切”不适用于俄罗斯。深入了解区块链的共识机制及算法原理所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。2012年,化名SunnyKing的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。下图所示的为工作量证明流程。举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。统计输入的字符创与得到对应目标结果实际使用的计算次数如下:对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:新难度值=旧难度值(20160分钟/过去2016个区块花费时长)。工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:目标值=最大目标值/难度值,其中最大目标值为一个恒定值0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。可以把比特币将这道工作量证明谜题的步骤大致归纳如下:该过程可以用下图表示:比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。区块链共识方法是什么(区块链共识机制有哪些)区块如何连接成区块链?区块链如何保证依次顺序相连?区块链由一串使用密码学算法产生的区块连接而成。每一个区块上写满了交易记录,区块按顺序相连形成链状结构,也就是区块链大账本。以比特币为例,矿工在生成新区块时,需要根据前一个区块的哈希值、新交易区块和随机数,来计算新的哈希值和随机数。也就是说每一个区块都是在前一个区块数据的基础上生成的,该机制保证了区块链数据的唯一性。因为交易记录细微的变化也会彻底改变哈希值的结果,所以矿工在进行算力竞争的时候无法作弊,每个矿工都必须等前一个区块生成之后才能根据前一个区块的数据开始计算符合条件的随机数,保证了挖矿的公平性。区块链中的区块是通过什么连接的专家介绍,区块链可以通俗地被理解为一个分布式的公共账本,这个账本由各个区块连成一个链条。在传统记账系统中,记账权掌握在中心服务器手中。而在区块链这个“账本”上,链条上的每一个点都能在上面记录信息,构成点对点的记账系统。因此,区块链技术被认为是一种去中心化的技术。比如,在一个100人的村庄,张三向李四买了一头牛,向他支付1万元。过去,他要依靠中间人赵六,才能将自己的1万元转给李四。而有了区块链系统,张三可以直接将自己的1万元记到李四的账本上,同时交易信息会传到全村,也就是整个区块链系统,使其他98个人也能看到信息。由系统记录整个交易过程,具有可溯源优势,防止赵六账本丢失或李四不认账等问题。扩展资料2008年由中本聪第一次提出了区块链的概念,在随后的几年中,区块链成为了电子货币比特币的核心组成部分:作为所有交易的公共账簿。通过利用点对点网络和分布式时间戳服务器,区块链数据库能够进行自主管理。为比特币而发明的区块链使它成为第一个解决重复消费问题的数字货币。比特币的设计已经成为其他应用程序的灵感来源。-区块链参考资料来源:凤凰网-人民日报:区块链,你了解多少深入了解区块链的共识机制及算法原理所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。2012年,化名SunnyKing的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。下图所示的为工作量证明流程。举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。统计输入的字符创与得到对应目标结果实际使用的计算次数如下:对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:新难度值=旧难度值(20160分钟/过去2016个区块花费时长)。工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:目标值=最大目标值/难度值,其中最大目标值为一个恒定值0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。可以把比特币将这道工作量证明谜题的步骤大致归纳如下:该过程可以用下图表示:比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。bsc链nonce太低了是什么意思,如何解决原因是刷机失败,版本不支持,更换版本BSC是一个独立的区块链,采用PoSA共识机制(参与者质押BNB成为验证者),作为可扩展的基础设施而创建,旨在不影响速度的情况下处理大量低成本的DeFi交易。区块链科普区块链的概念这么火,竟然没有人能很好的解释基本概念。到找了一个网站,用图示的方法解释了一些基本概念。blockchiandemo以下是涉及到的概念。datahashblocknoucemineprevdistributedpeertokencoinbase理解如下:1hash和data的关系。不同的data对应不同的hash,输入相同的data,会出现相同的hash,但是你无法从hash反推出data是什么。这是由数学算法决定的。没有数据或者海量数据,hash依旧是那么多位数。2block。区块。简易版的组成:block序号。nonce。data。hash。mine。3nonce。mine。nonce与hash的关系。nonce是一组数字,不同的nonce对应不同的hash,而且是一一对应。也就是说,hash改变,nonce也必须改变。当你在block里面改变你的data时,你的hash改变了,hash是自动改变的。但是同时,你的nonce并没有改变,于是它与hash不匹配。这个时候,你的这个block就会被判定无效(invalidate)。这个时候,通过挖矿(mine),运行算法,来给当前的hash匹配到相应的nonce,使这个block生效。mine需要耗费计算资源。nonce被翻译成碰撞数,也是生动。4blockchainblockchain就是block的链条。他们通过prev,也就是记录前一个block的hash链接起来。因此,第一个block没有prvioushash。在blockchain中,跟block一样,如果你改变任意一个节点的data,其hash值改变后,为了让它validate,你需要mine,以匹配到nonce。我试着mine了后,发现改变data后的hash变化后,mine后的hash还会继续改变,跟nonce都变化了,这样才validate了。这里并不明白为什么。同时,由于其后一个block继承到了新的prevhash,整个block变得invalidate,需要mine。也就是说,被改变后的block连同其后的每一个block都需要mine,才能validate。5distributed分布式一条区块链会有n个peer,是其完全相同的复制品。我的理解是:每个人都有一个完整的、与其他人相同的记录在区块链的账本。当一个blockchain里的数据改变时,它需要使用mine的方式重新使得整个blockchain有效,但与此同时,系统会发现它与其他的blockchain是不一会的(比对最后一个block的hash等就可以了),这时会判定其他多数的blockchain是有效的,用少数服从多数原则判定账本,也就是说,这个blockchain的改变会视为无效。6token(代币)token的英英解释是这样的:Atokenisaroundflatpieceofmetalorplasticthatissometimesusedinsteadofmoney。翻译成代币也算是准确。token就是记录在block中data里面的交易数据,包括金额,以及from和to。每个block里的token记录的都是所有的转账记录。(目前的理解)也就是说,当你进行了一笔交易时,这个交易记录会被广播到所有peer的block中的token记录里。7coinbase可以理解为币池,就是流通的货币总量。就是这个blockchain里面的token总额或者叫做coin有多少。区块链技术(节点和网络)矿工是同时进行挖矿的节点,它们试图创建新的区块(通过改变nonce,反复对区块进行哈希运算,以找到有效区块),然后把新的副本加入区块链并广播给其它节点,其它节点再进行验证,最后转播或拒收该区块。需要注意的是,矿工和节点是分开的,节点可以是矿工,但节点不一定要挖矿。当全节点从矿工处接收了一个有效区块,它会将其添加到自己的本地副本中,并把区块转播给一些相连节点,这些节点再验证这个区块并广播给其它相连节点。通过这种方式,这个区块被传播到了整个网络,接下来的区块再重复这个步骤。区块链如何识别中介?区块链常见的三大共识机制区块链是建立在P2P网络,由节点参与的分布式账本系统,最大的特点是“去中心化”。也就是说在区块链系统中,用户与用户之间、用户与机构之间、机构与机构之间,无需建立彼此之间的信任,只需依靠区块链协议系统就能实现交易。可是,要如何保证账本的准确性,权威性,以及可靠性?区块链网络上的节点为什么要参与记账?节点如果造假怎么办?如何防止账本被篡改?如何保证节点间的数据一致性?……这些都是区块链在建立“去中心化”交易时需要解决的问题,由此产生了共识机制。所谓“共识机制”,就是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;当出现意见不一致时,在没有中心控制的情况下,若干个节点参与决策达成共识,即在互相没有信任基础的个体之间如何建立信任关系。区块链技术正是运用一套基于共识的数学算法,在机器之间建立“信任”网络,从而通过技术背书而非中心化信用机构来进行全新的信用创造。不同的区块链种类需要不同的共识算法来确保区块链上最后的区块能够在任何时候都反应出全网的状态。目前为止,区块链共识机制主要有以下几种:POW工作量证明、POS股权证明、DPOS授权股权证明、Paxos、PBFT(实用拜占庭容错算法)、dBFT、DAG(有向无环图)接下来我们主要说说常见的POW、POS、DPOS共识机制的原理及应用场景概念:工作量证明机制(Proofofwork),最早是一个经济学名词,指系统为达到某一目标而设置的度量方法。简单理解就是一份证明,用来确认你做过一定量的工作,通过对工作的结果进行认证来证明完成了相应的工作量。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出,并通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。应用:POW最著名的应用当属比特币。在比特币网络中,在Block的生成过程中,矿工需要解决复杂的密码数学难题,寻找到一个符合要求的BlockHash由N个前导零构成,零的个数取决于网络的难度值。这期间需要经过大量尝试计算(工作量),计算时间取决于机器的哈希运算速度。而寻找合理hash是一个概率事件,当节点拥有占全网n%的算力时,该节点即有n/100的概率找到BlockHash。在节点成功找到满足的Hash值之后,会马上对全网进行广播打包区块,网络的节点收到广播打包区块,会立刻对其进行验证。如果验证通过,则表明已经有节点成功解迷,自己就不再竞争当前区块,而是选择接受这个区块,记录到自己的账本中,然后进行下一个区块的竞争猜谜。网络中只有最快解谜的区块,才会添加的账本中,其他的节点进行复制,以此保证了整个账本的唯一性。假如节点有任何的作弊行为,都会导致网络的节点验证不通过,直接丢弃其打包的区块,这个区块就无法记录到总账本中,作弊的节点耗费的成本就白费了,因此在巨大的挖矿成本下,也使得矿工自觉自愿的遵守比特币系统的共识协议,也就确保了整个系统的安全。优缺点优点:结果能被快速验证,系统承担的节点量大,作恶成本高进而保证矿工的自觉遵守性。缺点:需要消耗大量的算法,达成共识的周期较长概念:权益证明机制(ProofofStake),要求证明人提供一定数量加密货币的所有权。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。应用:2012年,化名SunnyKing的网友推出了Peercoin(点点币),是权益证明机制在加密电子货币中的首次应用。PPC最大创新是其采矿方式混合了POW及POS两种方式,采用工作量证明机制发行新币,采用权益证明机制维护网络安全。为了实现POS,SunnyKing借鉴于中本聪的Coinbase,专门设计了一种特殊类型交易,叫Coinstake。上图为Coinstake工作原理,其中币龄指的是货币的持有时间段,假如你拥有10个币,并且持有10天,那你就收集到了100天的币龄。如果你使用了这10个币,币龄被消耗(销毁)了。优缺点:优点:缩短达成共识所需的时间,比工作量证明更加节约能源。缺点:本质上仍然需要网络中的节点进行挖矿运算,转账真实性较难保证概念:授权股权证明机制(DelegatedProofofStake),与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。授权股权证明在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。应用:比特股(Bitshare)是一类采用DPOS机制的密码货币。通过引入了见证人这个概念,见证人可以生成区块,每一个持有比特股的人都可以投票选举见证人。得到总同意票数中的前N个(N通常定义为101)候选者可以当选为见证人,当选见证人的个数(N)需满足:至少一半的参与投票者相信N已经充分地去中心化。见证人的候选名单每个维护周期(1天)更新一次。见证人然后随机排列,每个见证人按序有2秒的权限时间生成区块,若见证人在给定的时间片不能生成区块,区块生成权限交给下一个时间片对应的见证人。DPoS的这种设计使得区块的生成更为快速,也更加节能。DPOS充分利用了持股人的投票,以公平民主的方式达成共识,他们投票选出的N个见证人,可以视为N个矿池,而这N个矿池彼此的权利是完全相等的。持股人可以随时通过投票更换这些见证人(矿池),只要他们提供的算力不稳定,计算机宕机,或者试图利用手中的权力作恶。优缺点:优点:缩小参与验证和记账节点的数量,从而达到秒级的共识验证缺点:中心程度较弱,安全性相比POW较弱,同时节点代理是人为选出的,公平性相比POS较低,同时整个共识机制还是依赖于代币的增发来维持代理节点的稳定性。区块链有几种共识算法?RippleConsensus(瑞波共识算法)使一组节点能够基于特殊节点列表达成共识。初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。由于该俱乐部由“中心化”开始,它将一直是“中心化的”,而如果它开始腐化,股东们什么也做不了。5、PBFT:PracticalByzantineFaultTolerance(实用拜占庭容错算法)PBFT是一种状态机副本复制算法,即服务作为状态机进行建模,状态机在分布式系统的不同节点进行副本复制。每个状态机的副本都保存了服务的状态,同时也实现了服务的操作。将所有的副本组成的集合使用大写字母R表示,使用0到|R|-1的整数表示每一个副本。为了描述方便,假设|R|=3f+1,这里f是有可能失效的副本的最大个数。尽管可以存在多于3f+1个副本,但是额外的副本除了降低性能之外不能提高可靠性。PBFT算法主要特点如下:客户端向主节点发送请求调用服务操作;主节点通过广播将请求发送给其他副本;所有副本都执行请求并将结果发回客户端;客户端需要等待f+1个不同副本节点发回相同的结果,作为整个操作的最终结果。什么是区块链共识?所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。区块链作为一种按时间顺序存储数据的数据结构,可支持不同的共识机制。共识机制是区块链技术的重要组件。区块链共识机制的目标是使所有的诚实节点保存一致的区块链视图,同时满足两个性质:1)一致性。所有诚实节点保存的区块链的前缀部分完全相同。2)有效性。由某诚实节点发布的信息终将被其他所有诚实节点记录在自己的区块链中。区块链的四种共识机制区块链的共识机制可以分为以下四类:权益证明机制、工作量证明机制、Pool验证和池股份授权证明机制。区块链,就是一个又一个区块组成的链条。每一个区块中保存了一定的信息,它们按照各自产生的时间顺序连接成链条。这个链条被保存在所有的服务器中,只要整个系统中有一台服务器可以工作,整条区块链就是安全的。这些服务器在区块链系统中被称为节点,它们为整个区块链系统提供存储空间和算力支持。区块链---共识算法PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。R=Hash(r)哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:Rd=Hash(r+n)该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。DPoS算法和PoS算法相似,也采用股份和权益质押。但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。拜占庭问题:拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。BFT:BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。拜占庭容错系统:发生故障的节点被称为拜占庭节点,而正常的节点即为非拜占庭节点。假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n≥3m+1),拜占庭容错系统需要满足如下两个条件:另外,拜占庭容错系统需要达成如下两个指标:PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点p=vmod|R|。v:视图编号,|R|节点个数,p:主节点编号。PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。具体流程如下:客户端c向主节点p发送REQUEST,o,t,c请求。o:请求的具体操作,t:请求时客户端追加的时间戳,c:客户端标识。REQUEST:包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。主节点收到客户端的请求,需要进行以下交验:a客户端请求消息签名是否正确。非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条PRE-PREPARE,v,n,d,m消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。PRE-PREPARE,v,n,d进行主节点签名。n是要在某一个范围区间内的[h,H],具体原因参见垃圾回收章节。副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:a主节点PRE-PREPARE消息签名是否正确。b当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。cd与m的摘要是否一致。dn是否在区间[h,H]内。非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条PREPARE,v,n,d,i消息,v,n,d,m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。PREPARE,v,n,d,i进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于ViewChange过程中恢复未完成的请求操作。主节点和副本节点收到PREPARE消息,需要进行以下交验:a副本节点PREPARE消息签名是否正确。b当前副本节点是否已经收到了同一视图v下的n。cn是否在区间[h,H]内。dd是否和当前已收到PRE-PPREPARE中的d相同非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条COMMIT,v,n,d,i消息,v,n,d,i与上述PREPARE消息内容相同。COMMIT,v,n,d,i进行副本节点i的签名。记录COMMIT消息到日志中,用于ViewChange过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。主节点和副本节点收到COMMIT消息,需要进行以下交验:a副本节点COMMIT消息签名是否正确。b当前副本节点是否已经收到了同一视图v下的n。cd与m的摘要是否一致。dn是否在区间[h,H]内。非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回REPLY,v,t,c,i,r给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起ViewChange协议。ViewChange协议:副本节点向其他节点广播VIEW-CHANGE,v+1,n,C,P,i消息。n是最新的stablecheckpoint的编号,C是2f+1验证过的CheckPoint消息集合,P是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。当主节点p=v+1mod|R|收到2f个有效的VIEW-CHANGE消息后,向其他节点广播NEW-VIEW,v+1,V,O消息。V是有效的VIEW-CHANGE消息集合。O是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始O中的PRE-PREPARE消息处理流程。在上述算法流程中,为了确保在ViewChange的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。副本节点i发送CheckPoint,n,d,i给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stablecheckpoint。这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。为了防止i的处理请求过快,设置一个上文提到的高低水位区间[h,H]来解决这个问题。低水位h等于上一个stablecheckpoint的编号,高水位H=h+L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L=2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stablecheckpoint发生变化,再继续前进。在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证,这也称为法定人数。在Raft集群中执行操作所需的最少投票数为(N/2+1),其中N是组中成员总数,即投票至少超过一半,这也就是为什么集群节点通常为奇数的原因。因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。数据存储:Tidb/TiKV日志:阿里巴巴的DLedger服务发现:Consuletcd集群调度:HashiCorpNomad只能容纳故障节点(CFT),不容纳作恶节点顺序投票,只能串行apply,因此高并发场景下性能差Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。因此,在给定的实例中,Raft集群的节点可以处于以下任何状态:追随者(Follower),候选人(Candidate)或领导者(Leader)。系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。Raft使用基于心跳的RPC机制来检测何时开始新的选举。在正常期间,Leader会定期向所有可用的Follower发送心跳消息(实际中可能把日志和心跳一起发过去)。因此,其他节点以Follower状态启动,只要它从当前Leader那里收到周期性的心跳,就一直保持在Follower状态。当Follower达到其超时时间时,它将通过以下方式启动选举程序:根据Candidate从集群中其他节点收到的响应,可以得出选举深入了解区块链的共识机制及算法原理所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。2012年,化名SunnyKing的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。下图所示的为工作量证明流程。举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。统计输入的字符创与得到对应目标结果实际使用的计算次数如下:对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:新难度值=旧难度值(20160分钟/过去2016个区块花费时长)。工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:目标值=最大目标值/难度值,其中最大目标值为一个恒定值0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。可以把比特币将这道工作量证明谜题的步骤大致归纳如下:该过程可以用下图表示:比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。如何准确理解区块链以及如何识别区块链骗局?目前,区块链是一个新兴产业或处于发展阶段。许多投资者对区块链非常感兴趣,但他们并不十分熟悉。许多罪犯利用这一点在区块链行业制造了许多骗局。区块链是一种新技术和创新的技术模式。然而货币发行只是基于区块链技术的行为,两者不能等同。目前绝大多数货币发行和货币投机都涉嫌非法集资。真正的虚拟硬币是开源的,数量有限,不受任何企业或平台的操纵。以比特币为例他可以兑换国家法定硬币并进行交易。当个人或企业自己制造硬币时,源代码是不开放的可以被企业操纵无限期地发行额外的硬币。事实上它毫无价值。普通骗子的利润依赖于经典的传销方法。就是拉一下头。因为所生产的硬币没有实际价值,该公司唯一的盈利手段就是依靠不断加入的成员。如果你的兑现方法是通过拉别人的头来获得金币,这会让你觉得邀请好朋友所获得的回报实际上不能在第三方平台上交易和消费。这种硬币没有真正的价值。真正的假币也有市场规则,事实上就像股票市场一样,他们通过低买高卖来获利。如果一个平台承诺在开始的几个月内飙升xx倍,比特币等加密货币最初是极客圈的产品,它们都是由高科技人才制造的。因此最严重的加密货币的名称充满了科技的味道,通常与区块链项目的内容有关。然而普通人因此不容易理解它的含义。虽然许多正常的加密货币也需要营销和推广,但它们也需要宣传项目的优势,希望被更多人知晓和使用,宣传肯定不会承诺无偿赚钱,也不会通过拉人们离线开发来推广。但是对于出售硬币的空金字塔来说,目的是为了收集钱,所以你必须画一幅美丽的赚钱图画,然后直接或变相地通过拉人们离线发展来收集钱。“区块链”的认识以及“区块链”的运用“区块链”的认识以及“区块链”的运用“区块链”可以说是现在最火的一个关键词了,无论是网络信息,还是平时闲聊,到处都有听到它的消息。虽然大家讨论的比较多,但大部分人对于“区块链”还是比较懵懂的。因此我们也常常听到很多人问“什么是区块链技术”“数字货币和区块链究竟是什么关系”“如何才能分辨出好的区块链项目”等相关的问题。至于区块链到底是什么区块链技术是指一种全民参与记账的方式。所有的系统背后都有一个数据库,你可以把数据库看成是就是一个大账本,目前是各自记各自的账。但现在区块链系统中,每个人都可以进行记账,系统会自动选择记账最好最快的人,把它记账的内容写到账本中,并将这账本中的内容发给系统内所有的人备份。那么这样全民记账有什么好处呢首先,最大的好处就是安全,有了这个中央大账本,那么其它人就无法更改,也无法摧毁,因为它并不是一台电脑控制的,不仅能够大大降低成本,也能提高效率。而由于每个人都有相同的账本,能确保账本记录过程是公开透明的。其次,区块链技术最重要的就是能解决中介信用问题,在以前两个互不信任的人要合作很难,必须依靠第三方,就好像转账必须要通过银行一样,但通过区块链技术,比特币在没有任何中介机构参与的情况下,人类第一次实现了双方可以互信的转账行为;因为区块链无需中介参与、过程高效透明且成本很低,数据高度安全的特点,所以,如果在这三个方面有任意一个需求的任何行业、任何领域都有机会使用区块链技术。如果还说“区块链”只能炒币,那你太落后了:生活水平的提升,消费时代升级,很多人在出国旅游的时候都喜欢买买买,即便不出国的人也喜欢在网上购买一些进口商品。于是,跨境网购在最近几年迅速崛起。但跨境网购的很多流程和环节都在国外,做为跨境网购用户如何能确保自己买到的商品不是A货或假冒商品呢为了解决能让消费者买到心仪的商品同时又正品行货,现在我们有一种既靠谱、又便捷的解决方案,那就是区块链技术,它有以下几大特点:1利用块链式数据结构来验证与存储数据2利用分布式节点共识算法来生成和更新数据3利用密码学的方式保证数据传输和访问的安全4利用由自动化脚本代码组成的智能合约来编程和操作数据如今,很多电商看上了区块链技术的这些优点,将其用于海外购业务,例如:京东。据了解,现在京东已经与可莱丝面膜、正官庄高丽参红参人参、爱茉莉化妆品、澳伯顿杏干葡萄干水果燕麦片等品牌商达成合作,借助区块链技术,将这些品牌商的商品原材料过程、生产过程、流通过程、营销过程的信息进行整合并写入区块链,实现精细到一物一码的全流程正品追溯。由此,每一条信息都拥有自己特有的区块链ID“身份证”,且每条信息都附有各主体的数字签名和时间戳,供消费者查询和校验。区块链的数据签名和加密技术让全链路信息实现了防篡改、标准统一和高效率交换。现在有了区块链这种可靠的技术,有了靠谱的跨境溯源和跨境物流,我们都不需要再自己亲自出国买了,也不需要担心自己在电商平台上买的商品不是正品。我们只要坐在家里动动鼠标,喜欢的海外大牌商品就能如期而至。相信在不久的将来,区块链技术也会运用到其它的电商中。区块链可以做()的技术中介区块链可以做成本更低,更公开,更透明,更可信的技术中介。应用方面:1、金融领域。区块链在国际汇兑、信用证、股权登记和证券交易所等金融领域有着潜在的巨大应用价值。将区块链技术应用在金融行业中,能够省去第三方中介环节,实现点对点的直接对接,从而在大大降低成本的同时,快速完成交易支付。比如Visa推出基于区块链技术的VisaB2BConnect,它能为机构提供一种费用更低、更快速和安全的跨境支付方式来处理全球范围的企业对企业的交易。要知道传统的跨境支付需要等3-5天,并为此支付1-3%的交易费用。Visa还联合Coinbase推出了首张比特币借记卡,花旗银行则在区块链上测试运行加密货币“花旗币”。2、物联网和物流领域。区块链在物联网和物流领域也可以天然结合。通过区块链可以降低物流成本,追溯物品的生产和运送过程,并且提高供应链管理的效率。该领域被认为是区块链一个很有前景的应用方向。区块链通过结点连接的散状网络分层结构,能够在整个网络中实现信息的全面传递,并能够检验信息的准确程度。这种特性一定程度上提高了物联网交易的便利性和智能化。区块链+大数据的解决方案就利用了大数据的自动筛选过滤模式,在区块链中建立信用资源,可双重提高交易的安全性,并提高物联网交易便利程度。为智能物流模式应用节约时间成本。区块链结点具有十分自由的进出能力,可独立的参与或离开区块链体系,不对整个区块链体系有任何干扰。区块链+大数据解决方案就利用了大数据的整合能力,促使物联网基础用户拓展更具有方向性,便于在智能物流的分散用户之间实现用户拓展。

本文来自gonglue投稿,不代表升华网立场,如若转载,请注明出处:https://54sh.com/overseas/16536.html

() 0
上一篇 11-05
下一篇 11-05

相关推荐

  • 怎样完善教师退出机制?

    教育是国家的基础,而教师则是教育事业的中坚力量。随着社会不断发展,人们对教师的要求也越来越高,教师的职业素养、教学能力、职业道德等各方面都要达到一定标准。但是,难免会出现一些教师在一些方面表现出短板,甚至存在不良的职业行为,这给学生的成长和

    2025-01-16 18:35:01
    233 0
  • 在家烧烤要准备哪些调料清单

    烧烤配料主要是用来烧烤肉串,鸡翅,猪排,羊排,牛排,烤鸡,烤鸭,以及蔬菜等产品。烧烤配料主要是有很多种天然香辛料经多种工艺精细加工而成,加工成的烧烤配料可以是大型的食品加工企业或者广大家庭进行操作。不论是食品加工企业,还是个人,拿到这种腌料

    2024-12-06 08:26:02
    378 0
  • 留学生初始状态怎么填写

    过期时间不长的话,是没有关系的,你可以去报到。如果时间长了的话,那可能会对自己以后得工作有影响的。千万要注意自己的事情,以免今后麻烦。以下解答和知识希望对你有帮助。:关于报到证:报到证的全称是“全国普通高等学校本专科毕业生就业报到证”,由国

    2024-11-19 06:40:05
    219 0
  • 北海留学费用高吗吗

    优化人才开发体制环境,建立健全吸引、留住、用好人才的机制。培育建立统一开放的人力资源市场。加强高层次人才开发,重点培养德才兼备、具有战略眼光的中高级党政领导干部,擅长经营、具有市场开拓能力的优秀企业家,勇于创新的高级科技人才。依托高等院校、

    2024-11-03 15:25:01
    192 0