本文来自gonglue投稿,不代表升华网立场,如若转载,请注明出处:https://54sh.com/high/61089.html
高中数学合集百度网盘下载链接:/panbaiducom/s/1znmI8mJTas01m1m03zCRfQpwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。一般高考数学是考初中知...
高中数学合集百度网盘下载链接:/panbaiducom/s/1znmI8mJTas01m1m03zCRfQpwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。一般高考数学是考初中知识多还是高中知识多 高中数学是一门比较占分的科目,有繁多的公式和数值,让很多的同学感到头疼。下面我为大家整理的《高中数学知识点归纳总结及高中数学公式大全(完整版)》,仅供大家参考。 1集合与函数 内容子交并补集,还有幂指对函数。 性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨, 若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。 底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0, 偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平; 其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同; 图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域; 反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数; 函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数; 图象第一象限内,函数增减看正负。 2三角函数 三角函数是函数,象限符号坐标注。 函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。 正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形; 向下三角平方和,倒数关系是对角, 变成税角好查表,化简证明少不了。 二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。 两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。 和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名, 保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。 条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。 公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦, 幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度, 先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名, 简单三角的方程,化为最简求解集; 3不等式 解不等式的途径,利用函数的性质。 对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。 数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。 求差与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。 非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。 图形函数来帮助,画图建模构造法。 4数列 等差等比两数列,通项公式N项和。 两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。 数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。 归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。 还有数学归纳法,证明步骤程序化: 首先验证再假定,从K向着K加1, 推论过程须详尽,归纳原理来肯定。 5复数 虚数单位i一出,数集扩大到复数。 一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。 箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。 代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。 i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。 虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。 几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算, 逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。 利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和差是由积商得。 四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。 复数实数很密切,须注意本质区别。 6排列、组合、二项式定理 加法乘法两原理,贯穿始终的法则。 与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。 归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。 特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。 排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。 两条性质两公式,函数赋值变换式。 7立体几何 点线面三位一体,柱锥台球为代表。 距离都从点出发,角度皆为线线成。 垂直平行是重点,证明须弄清概念。 线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。 计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。 射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。 公理性质三垂线,解决问题一大片。 8平面解析几何 有向线段直线圆,椭圆双曲抛物线, 参数方程极坐标,数形结合称典范。 笛卡尔的观点对,点和有序实数对, 两者—一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵; 都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程, 给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好; 平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。 图形直观数入微,数学本是数形学怎样才能学好高中数学高中的多一些!包括很多内容:最后还有空间立体的等!高中数学主要是代数,三角,几何三个部分内容相互独立但是解题时常互相提供方法,等高三你就知道了 必修的: 代数部分有: 1 集合与简易逻辑其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题 2 函数先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象 3 三角三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了 4 几何也就是平面解析几何,用坐标法定量的研究平面几何问题学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程 高考的重点一般在 常用函数 常用双曲线+直线 数列 三角 二项式定理立体几何排列组合加概率等其他一些知识是比较小的部分 重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的 难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10% 高中数学学习方法谈 进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。 一、 高中数学与初中数学特点的变化 1、数学语言在抽象程度上突变 初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。 2、思维方法向理性层次跃迁 高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。 3、知识内容的整体数量剧增 高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。 4、知识的独立性大 初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。 二、如何学好高中数学 1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、及时了解、掌握常用的数学思想和方法 学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。 4、针对自己的学习情况,采取一些具体的措施 ² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中 拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 ² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 ² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化 或半自动化的熟练程度。 ² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化, 使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 ² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课 外题,加大自学力度,拓展自己的知识面。 ² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩 固,消灭前学后忘。 ² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解 题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 ² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学 思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 ² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而 不是一味地去追求速度或技巧,这是学好数学的重要问题。高中数学知识点总结怎么说呢,每个人都有自己的方法,照搬根本不可能,我就说一下我高中学数学的方法吧:\x0d\1、在高中肯定会做很多的题,但是多做题并不一定好,主要是做对题,即使做错了,也要知道为什么错了,为什么要这样做,我为什么没想到。\x0d\2、每做一道题都清楚这道题考的是什么,当我看到后我应该知道它考的那些知识点,我只要把这些知识点找出来,把可能用到的公式列出来,然后看看题目中的条件符合那条公式。\x0d\3、错题要整理,弄一个错题本。再就是学的知识点你要明白原理,就像对数,指数什么的明白原理,为什么等号两边能够互换,以及图像什么的\x0d\只要你基础扎实,学的知识明白原理了,再多做题,学好应该没问题吧,当然也是个人观点,仅供参考。2020高一数学教案五篇《高中数学基础知识梳理(数学小飞侠)》百度网盘免费下载 i8i2 资源目录01集合例题讲解mp401集合进阶mp402函数的值域mp403函数的定义域与解析式mp404函数的单调性mp404函数的奇偶性mp405指数运算与指数函数mp407对数运算与对数函数mp408幂函数突破mp409函数零点专题mp410含参二次函数与不等式专题mp411二次函数根的分布专题mp412空间几何体mp413点线面位置关系进阶mp414平行关系突破mp415垂直关系突破mp416空间几何关系综合mp417直线方程突破mp418圆的方程突破mp419算法初步mp420算法语句与算法案例mp421数据的收集与频率分布mp422常用统计量与相关关系mp423古典概型概率mp424几何概型概率mp425任意角重难点mp426三角函数定义与诱导公式mp427三角函数图像及性质mp428平面向量几何运算mp429平面向量代数运算mp430三角恒等变换mp431三角函数计算专题mp432正弦定理与余弦定理mp433等差数列突破mp434等比数列突破mp435数列通项公式专题 mp436数列求和公式专题 mp437二次不等式与分式不等式mp438线性规划问题mp439基本不等式突破mp440逻辑用语专题mp441椭圆方程及其几何性质mp442双曲线方程及其性质mp443抛物线方程及其性质mp444直线与圆锥曲线综合mp445空间向量突破mp446导数的计算专题mp447导数的应用mp448导数的应用(二)mp449定积分与微积分mp450复数专题mp451排列组合mp452二项式定理mp453随机变量及其变量mp454回归分析与独立性检验mp4资源目录01集合例题讲解mp401集合进阶mp402函数的值域mp403函数的定义域与解析式mp404函数的单调性mp404函数的奇偶性mp405指数运算与指数函数mp407对数运算与对数函数mp408幂函数突破mp409函数零点专题mp410含参二次函数与不等式专题mp411二次函数根的分布专题mp412空间几何体mp413点线面位置关系进阶mp414平行关系突破mp415垂直关系突破mp416空间几何关系综合mp417直线方程突破mp418圆的方程突破mp419算法初步mp420算法语句与算法案例mp421数据的收集与频率分布mp422常用统计量与相关关系mp423古典概型概率mp424几何概型概率mp425任意角重难点mp426三角函数定义与诱导公式mp427三角函数图像及性质mp428平面向量几何运算mp429平面向量代数运算mp430三角恒等变换mp431三角函数计算专题mp432正弦定理与余弦定理mp433等差数列突破mp434等比数列突破mp435数列通项公式专题 mp436数列求和公式专题 mp437二次不等式与分式不等式mp438线性规划问题mp439基本不等式突破mp440逻辑用语专题mp441椭圆方程及其几何性质mp442双曲线方程及其性质mp443抛物线方程及其性质mp444直线与圆锥曲线综合mp445空间向量突破mp446导数的计算专题mp447导数的应用mp448导数的应用(二)mp449定积分与微积分mp450复数专题mp451排列组合mp452二项式定理mp453随机变量及其变量mp454回归分析与独立性检验mp4 继晷焚膏:继:继续,接替;晷:日光;膏:油脂,指灯烛。点燃蜡烛或油灯接替日光照明。形容夜以继日地勤奋学习或工作。下面给大家带来一些关于2020 高一数学 教案五篇,希望对大家有所帮助。 2020高一数学教案1 子集、全集、补集 教学目标: (1)理解子集、真子集、补集、两个集合相等概念; (2)了解全集、空集的意义, (3)掌握有关子集、全集、补集的符号及表示 方法 ,会用它们正确表示一些简单的集合,培养学生的符号表示的能力; (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集; (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想; (6)培养学生用集合的观点分析问题、解决问题的能力 教学重点:子集、补集的概念 教学难点:弄清元素与子集、属于与包含之间的区别 教学用具:幻灯机 教学过程设计 (一)导入新课 上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识 提出问题(投影打出) 已知 , , ,问: 1哪些集合表示方法是列举法 2哪些集合表示方法是描述法 3将集M、集从集P用图示法表示 4分别说出各集合中的元素 5将每个集合中的元素与该集合的关系用符号表示出来将集N中元素3与集M的关系用符号表示出来 6集M中元素与集N有何关系集M中元素与集P有何关系 找学生回答 1集合M和集合N;(口答) 2集合P;(口答) 3(笔练结合板演) 4集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1(口答) 5 , , , , , , , (笔练结合板演) 6集M中任何元素都是集N的元素集M中任何元素都是集P的元素(口答) 引入在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题 (二)新授知识 1子集 (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。 记作: 读作:A包含于B或B包含A 当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A 性质:① (任何一个集合是它本身的子集) ② (空集是任何集合的子集) 置疑能否把子集说成是由原来集合中的部分元素组成的集合 解疑不能把A是B的子集解释成A是由B中部分元素所组成的集合 因为B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的 (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。 例: ,可见,集合 ,是指A、B的所有元素完全相同 (3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。 思考能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集” 集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B 提问 (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。 (2) 判断下列写法是否正确 ① A ② A ③ ④A A 性质: (1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A; (2)如果 , ,则 例1 写出集合 的所有子集,并指出其中哪些是它的真子集 解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集 注意(1)子集与真子集符号的方向。 (2)易混符号 ①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3} ②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。 如: {0}。不能写成 ={0}, ∈{0} 例2 见教材P8(解略) 例3 判断下列说法是否正确,如果不正确,请加以改正 (1) 表示空集; (2)空集是任何集合的真子集; (3) 不是 ; (4) 的所有子集是 ; (5)如果 且 ,那么B必是A的真子集; (6) 与 不能同时成立 解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确; (2)不正确空集是任何非空集合的真子集; (3)不正确 与 表示同一集合; (4)不正确 的所有子集是 ; (5)正确 (6)不正确当 时, 与 能同时成立 例4 用适当的符号( , )填空: (1) ; ; ; (2) ; ; (3) ; (4)设 , , ,则A B C 解:(1)0 0 ; (2) = , ; (3) , ∴ ; (4)A,B,C均表示所有奇数组成的集合,∴A=B=C 练习教材P9 用适当的符号( , )填空: (1) ; (5) ; (2) ; (6) ; (3) ; (7) ; (4) ; (8) 解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) 提问:见教材P9例子 (二) 全集与补集 1补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即A在S中的补集 可用右图中阴影部分表示 性质: S( SA)=A 如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6}; (2)若A={0},则 NA=N-; (3) RQ是无理数集。 2全集: 如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用 表示 注: 是对于给定的全集 而言的,当全集不同时,补集也会不同 例如:若 ,当 时, ;当 时,则 例5 设全集 , , ,判断 与 之间的关系 解:∵ :见教材P10练习 1填空: , , ,那么 , 解: , 2填空: (1)如果全集 ,那么N的补集 ; (2)如果全集, ,那么 的补集 ( )= 解:(1) ;(2) (三)小结:本节课学习了以下内容: 1五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点) 2五条性质 (1)空集是任何集合的子集。Φ A (2)空集是任何非空集合的真子集。Φ A (A≠Φ) (3)任何一个集合是它本身的子集。 (4)如果 , ,则 (5) S( SA)=A 3两组易混符号:(1)“ ”与“ ”:(2){0}与 (四)课后作业:见教材P10习题12 2020高一数学教案2 函数单调性与(小)值 一、教材分析 1、 教材的地位和作用 (1)本节课主要对函数单调性的学习; (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) (3)它是历年高考的 热点 、难点问题 (根据具体的课题改变就行了,如果不是热点难点问题就删掉) 2、 教材重、难点 重点:函数单调性的定义 难点:函数单调性的证明 重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有) 二、教学目标 知识目标:(1)函数单调性的定义 (2)函数单调性的证明 能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想 情感目标:培养学生勇于探索的精神和善于合作的意识 (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化) 三、教法学法分析 1、教法分析 “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下 教学方法 :开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 2、学法分析 “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳 总结 法。 (前三部分用时控制在三分钟以内,可适当删减) 四、教学过程 1、以旧引新,导入新知 通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然) 2、创设问题,探索新知 紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。 让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。 让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。 3、 例题讲解,学以致用 例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式 例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。 例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。 学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。 4、归纳小结 本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。 5、作业布置 为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题13A组1、2、3 ,二组 习题13A组2、3、B组1、2 6、板书设计 我力求简洁明了地概括本节课的学习要点,让学生一目了然。 (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动) 五、教学评价 本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。 2020高一数学教案3 教学目标:①掌握对数函数的性质。 ②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。 ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。 教学重点与难点:对数函数的性质的应用。 教学过程设计: ⒈复习提问:对数函数的概念及性质。 ⒉开始正课 1 比较数的大小 例 1 比较下列各组数的大小。 ⑴loga51 ,loga59 (a>0,a≠1) ⑵log0506 ,logЛ05 ,lnЛ 师:请同学们观察一下⑴中这两个对数有何特征 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小 生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。 师:对,请叙述一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0 调递减,所以loga51>loga59 ;当a>1时,函数y=logax单调递 增,所以loga51 板书: 解:Ⅰ)当0 ∵51<59 ∴loga51>loga59 Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数, ∵51<59 ∴loga51 师:请同学们观察一下⑵中这三个对数有何特征 生:这三个对数底、真数都不相等。 师:那么对于这三个对数如何比大小 生:找“中间量”, log0506>0,lnЛ>0,logЛ05<0;lnЛ>1, log0506<1,所以logЛ05< log0506< lnЛ。 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数 的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2 函数的定义域, 值 域及单调性。 例 2 ⑴求函数y=的定义域。 ⑵解不等式log02(x2+2x-3)>log02(3x+3) 师:如何来求⑴中函数的定义域(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log08x-1≥0,且真数x>0。 板书: 解:∵ 2x-1≠0 x≠05 log08x-1≥0 , x≤08 x>0 x>0 ∴x(0,05)∪(05,08〕 师:接下来我们一起来解这个不等式。 分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零, 再根据对数函数的单调性求解。 师:请你写一下这道题的解题过程。 生:<板书> 解: x2+2x-3>0 x<-3 或 x>1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的解为:1 例 3 求下列函数的值域和单调区间。 ⑴y=log05(x- x2) ⑵y=loga(x2+2x-3)(a>0,a≠1) 师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。 下面请同学们来解⑴。 生:此函数可看作是由y= log05u, u= x- x2复合而成。 板书: 解:⑴∵u= x- x2>0, ∴0 u= x- x2=-(x-05)2+025, ∴0 ∴y= log05u≥log05025=2 ∴y≥2 x x(0,05] x[05,1) u= x- x2 y= log05u y=log05(x- x2) 函数y=log05(x- x2)的单调递减区间(0,05],单调递 增区间[05,1) 注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则 函数都不存在,性质就无从谈起。 师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什 么区别 生:⑴的底数是常值,⑵的底数是字母。 师:那么⑵如何来解 生:只要对a进行分类讨论,做法与⑴类似。 板书:略。 ⒊小结 这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能 通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。 ⒋作业 ⑴解不等式 ①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数) ⑵已知函数y=loga(x2-2x),(a>0,a≠1) ①求它的单调区间;②当0 ⑶已知函数y=loga (a>0, b>0, 且 a≠1) ①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。 ⑷已知函数y=loga(ax-1) (a>0,a≠1), ①求它的定义域;②当x为何值时,函数值大于1;③讨论它的 单调性。 5课堂教学设计说明 这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 比较数的大小,想通过这一部分的练习, 培养同学们构造函数的思想和分类讨论、数形结合的思想。二函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。 2020高一数学教案4 立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2020高一数学教案5 三角函数的周期性 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数 的图象 2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求 等函数的周期 4 理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”, 周期的求解。 三、学法指导 1、 是周期函数是指对定义域中所有 都有 ,即 应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度 与时间 之间的函数关系如图所示 (1)求该函数的周期; (2)求 时钟摆的高度。 例2、求下列函数的周期。 (1) (2) 总结:(1)函数 (其中 均为常数,且 的周期T= 。 (2)函数 (其中 均为常数,且 的周期T= 。 例3、求证: 的周期为 。 例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数, 且 总结:函数 (其中 均为常数,且 的周期T= 。 例5、(1)求 的周期。 (2)已知 满足 ,求证: 是周期函数 课后思考:能否利用单位圆作函数 的图象。 六、作业: 七、自主体验与运用 1、函数 的周期为 ( ) A、 B、 C、 D、 2、函数 的最小正周期是 ( ) A、 B、 C、 D、 3、函数 的最小正周期是 ( ) A、 B、 C、 D、 4、函数 的周期是 ( ) A、 B、 C、 D、 5、设 是定义域为R,最小正周期为 的函数, 若 ,则 的值等于 ( ) A、1 B、 C、0 D、 6、函数 的最小正周期是 ,则 7、已知函数 的最小正周期不大于2,则正整数 的最小值是 8、求函数 的最小正周期为T,且 ,则正整数 的值是 9、已知函数 是周期为6的奇函数,且 则 10、若函数 ,则 11、用周期的定义分析 的周期。 12、已知函数 ,如果使 的周期在 内,求 正整数 的值 13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的 函数关系如图所示: (1) 求该函数的周期; (2) 求 时,该质点离开平衡位置的位移。 14、已知 是定义在R上的函数,且对任意 有 成立, (1) 证明: 是周期函数; (2) 若 求 的值。 2020高一数学教案五篇相关 文章 : ★ 2020高中数学教学教案3篇 ★ 2020高一数学教学的工作计划5篇 ★ 高一数学教案范文5篇 ★ 2020高中数学教师工作总结 ★ 2020高中数学教案范文 ★ 2020高中数学教学心得体会5篇集锦 ★ 最新2020高一下学期数学教学工作总结5篇 ★ 2020高中数学教学的新学期工作计划5篇 ★ 2020高中数学教研组教学工作计划5篇 ★ 2020高中数学教师的工作计划5篇
宁夏民办二本大学录取分
上一篇
12-06
大学被录取到学校报到
下一篇
12-06