设f(x)满足,当x→0时,lncosx2是比xnf(x)

设f(x)满足,当x→0时,lncosx2是比xnf(x)高阶的无穷小,而xnf(x)是比esin2x-1高阶的无穷小,则正整数n等于(  )。...

2022年药学职称《初级中药士【代码:102】》考试题库-初级中药士【代码:102】-中药鉴定学 第四单元 皮类中药-

医药卫生-卫生资格初级

单选题-设f(x)满足,当x→0时,lncosx2是比xnf(x)高阶的无穷小,而xnf(x)是比esin2x-1高阶的无穷小,则正整数n等于(  )。

单选题

A.1

B.2

C.3

D.4

我个人认为这个应该是:A

解析:由知,当x→0时,f(x)~-x2,于是xnf(x)~-xn+2。又当x→0时,,esin2x-1~sin2x~2x。再根据已知条件有1<n+2<4,可得n=1。

本文来自zhongtiku投稿,不代表升华网立场,如若转载,请注明出处:http://54sh.com/zhiyetiku/2197163.html

() 0
上一篇 11-15
下一篇 11-15

相关推荐