班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有2

班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有25名学生,每个学生至少看过一类书,在所有没看过故事书的学生中,看过科幻书的人数是看过漫画书的2倍,只看过故事书的学生比余下学生中看过故事书的人数多1人,在只看过一类书的学生中,有一半没有看过故事书。那么只看过科幻书的学生人数是(  )。...

2021年银行招聘《综合知识》考试题库-综合知识-第一章 货币理论-

职业资格-银行招聘

单选题-班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有25名学生,每个学生至少看过一类书,在所有没看过故事书的学生中,看过科幻书的人数是看过漫画书的2倍,只看过故事书的学生比余下学生中看过故事书的人数多1人,在只看过一类书的学生中,有一半没有看过故事书。那么只看过科幻书的学生人数是(  )。

单选题

A.6

B.7

C.8

D.9

我个人认为这个应该是:A

解析:由“每个学生至少看过一类书”可知,看书情况分为7类:只看过故事书、只看过科幻书、只看过漫画书、只看过故事书和科幻书、只看过故事书和漫画书、只看过科幻书和漫画书、三种书都看过。设各类的学生人数分别为x1、x2、x3、x12、x13、x23、x123,则①x1+x2+x3+x12+x13+x23+x123=25;②x2+x23=2(x3+x23);③x12+x13+x123=x1-1;④x1=x2+x3,得x3+4x2=26,由于x2、x3分别为自然数,则当x2分别6、5、4、3、2、1时,x3分别为2、6、10、14、18、22,又由②可知,x23=x2-2x3,则x2>2x3,即只有x2=6,x3=2,再推出x1=8,x12+x13+x123=7,x23=2,则总人数为8+6+2+7+2=25符合题意,即只看过科幻书的学生人数为6人。

本文来自zhongtiku投稿,不代表升华网立场,如若转载,请注明出处:http://54sh.com/zhiyetiku/1323377.html

() 0
上一篇 11-13
下一篇 11-13

相关推荐

  • 班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有2

    班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有25名学生,每个学生至少看过一类书,在所有没看过故事书的学生中,看过科幻书的人数是看过漫画书的2倍,只看过故事书的学生比余下学生中看过故事书的人数多1人,在只看过一类书的学生中,有一半没有看过故事书。那么只看过科幻书的学生人数是(  )。

    2024-11-15 23:17:11
    0 0
  • 班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有2

    班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有25名学生,每个学生至少看过一类书,在所有没看过故事书的学生中,看过科幻书的人数是看过漫画书的2倍,只看过故事书的学生比余下学生中看过故事书的人数多1人,在只看过一类书的学生中,有一半没有看过故事书。那么只看过科幻书的学生人数是(  )。

    2024-11-14 20:48:00
    0 0
  • 班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有2

    班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有25名学生,每个学生至少看过一类书,在所有没看过故事书的学生中,看过科幻书的人数是看过漫画书的2倍,只看过故事书的学生比余下学生中看过故事书的人数多1人,在只看过一类书的学生中,有一半没有看过故事书。那么只看过科幻书的学生人数是(  )。

    2024-11-14 20:44:31
    0 0
  • 班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有2

    班级图书架上只有三类书:故事书、科幻书、漫画书。已知班上有25名学生,每个学生至少看过一类书,在所有没看过故事书的学生中,看过科幻书的人数是看过漫画书的2倍,只看过故事书的学生比余下学生中看过故事书的人数多1人,在只看过一类书的学生中,有一半没有看过故事书。那么只看过科幻书的学生人数是(  )。

    2024-11-13 17:56:15
    0 0